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Abstract

Elastic and shear moduli were determined for two aluminum matrix composites containing 20 and

40 volume percent discontinuous silicon carbide, respectively, using transverse, longitudinal, and

torsional vibrational modes of specimens prepared as thin beams. These moduli are consistent

with those determined from stress-strain measurements. The damping factors for these modes were

also determined. Thermal properties are used to show that part of the damping of transverse

modes is caused by the transverse thermal currents discussed by C. Zener (thermoelastic damping);

this damping is frequency-dependent with a maximum damping factor of ,-_ 0.002. The remaining

damping is frequency-independent, and has roughly similar values in transverse, longitudinal, and
torsional modes: ,,_ 0.000 1.
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Chapter 1

Introduction

The stresses occurring during the launch of a spacecraft excite vibrational modes in both the

spacecraft and the payload. It is common experience that the damping factors of these modes 1 are

in the range g _ 0.01 to 0.1 ; see References [6, 12]. These damping values arise from energy losses

in joints, from devices explicitly introduced to absorb vibrational energy (dampers), from coupling

with air, and from losses within the materials themselves (material damping). These values are

chosen to fit observations of the vibration modes; they are not the results of calculations based

upon reliable models of joints and other interconnections, reliable models of air interactions, and

basic material properties of the parts of the craft. Hence, there is some vagueness as to what

fraction each of these mechanisms contributes to the observed damping values, but it is generally

accepted that most of this damping is caused by energy dissipation in dampers and in joints, with

some small losses into the air; energy losses within the materials account for very little of the total.

Hence, the study of material damping has been of little importance for the understanding of and

control of vibrations occurring during launches.

Vibrational behaviors during standard operations in orbit are quite different from those at launch:

there is no air damping, and operational activities produce small stresses which do not induce joint-

slippage, and sometimes even fail to excite dampers (i.e., the joints and sometimes the dampers

exhibit stiction, becoming rigid at small applied stresses). A general estimate is that damping

factors are roughly 10 times smaller during orbital operations. 2 Hence, material damping can

become a substantial part of the total damping.

Modes with g _ 0.01 cause enough motion in Landsat-4 to compromise pointing accuracy [18].

Vibrations are expected to be an increasingly serious problem, since pointing accuracy requirements

are increasing. One approach to the control of orbital vibrations involves a study of the amount

of material damping that is passively available from the structure itself. Other approaches use

dampers and active servocontrol systems, but even then, a complete analysis requires knowledge

of the material damping values.

There have been studies of material damping at GSFC [4, 2] and elsewhere [25, 3, 20, 24]. These

have concluded that the damping factor for the flexural modes of metal beams is well-described

by a mechanism elucidated by Clarence Zener in 1948, [25]: Zener thermoelastic damping operates

1A glossary of measures of damping is in Appendix B. The damping factor g is used in this report.
2Private communication from Mr. J. Sudey, formerly of Code 716.2 at GSFC. He is the coauthor of Reference [18].
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Figure 1.1: The damping factor for flexural vibrations of rectangular beams (thickness << width) of
6061-T6 aluminum versus frequency. These curves are based upon the equations in Appendix C and
standard values for the thermoelastic parameters.

in flexural modes, but not in extensional 3 or torsional modes; it is a function of frequency, and

achieves a maximum value at a Zener frequency fZener which is proportional to the reciprocal of

the square of the thickness of the beam, h: fZener O¢1/h 2. As the frequency of a vibrational mode

departs from the Zener frequency, its damping decreases strongly until other damping mechanisms

mask it. If the frequency range of a flexural mode is within an order of magnitude of the Zener
frequency, then Zener damping is likely to dominate.

For standard aluminum alloys, the maximum Zener damping is gMax _'_ 0.002, and this occurs at

fZener _ 20 Hz for beams or sheets that are 2 mm thick: see Figure 1.1 for the frequency dependence
of Zener damping for the three thicknesses 0.1 cm, 1.0 cm, and 10 cm.

Hence, Zener damping is important over a range of frequencies of significance to many spacecraft

operations. Using frequencies both lower 4 and higher than the Zener frequency, we have measured

transverse mode damping factors in the lab as small as g _ 3 x 10 -5 for aluminum alloys. Longi-

tudinal and torsional modes are not affected by Zener damping; laboratory measured values range
from 10-3 to 10-4 . These measurements imply that it is not safe to assume that the values observed

in Landsat-4 operations are the smallest possible.

Addition of silicon carbide (SIC) to aluminum (A1), either as whiskers (SiCw) or as a fine particulate

(SiCp), increases the moduli and ultimate strength faster than the density and decreases the thermal

expansion [14]. Hence, Al+SiC composites have a use in areas in which high strength, low weight,

and low thermal expansion -- relative to standard aluminum alloys -- are desired. It is necessary

to measure the damping of this material to complete the characterization necessary for its use in

spacecraft, whether passive or active damping systems are to be used.

a Strictly speaking, extensional (i.e., longitudinal) modes exhibit Zener thermoelastic damping but fz .... is so low

that this damping is not observable in current practice.

4Tip-weighted cantilever beams were used; details will be reported separately.



We have studied the vibrational behaviors of beams of AI+SiC over a range of frequencies from

60 Hz to 30 000 Hz, have confirmed existing values for the elastic moduli of these materials, and

have observed damping factors for A1, for A1 with 20% SiC whiskers, 5 and for A1 with 40% SiC

particles (1-5 #m nominal diameter). Our results are restricted to strains of 10 -3 or less, which is

appropriate for many orbital operations, though not for launch. We observed no strain dependence

in either the modulus or the damping within this range, but an increase in damping is expected

for larger strains [4]. Modeling thermal deformations requires the coefficients of thermal expansion

and of thermal conductivity; we report values for these quantities and use them to show that Zener

damping dominates the damping of the flexural modes of beams of these materials as long as the

vibration frequency is within an order of magnitude of the Zener frequency. For more distant

frequencies, another damping mechanism (or mechanisms) becomes visible, with a damping factor

that is about the same in transverse, longitudinal, and torsional modes.

SEach concentration is measured using its volume fraction, often denoted by v/o, but denoted by V_" here.





Chapter 2

Specimens

Standard 6061-T6 aluminum alloy was used as the base-line material. A test beam was fashioned

from it, labeled CONTROL, and numbered #0.

ARCO 1 provided us with a specimen of 6061-T6 aluminum alloy with 20% silicon carbide in the

form of whiskers: their designation is SXA 6061-T6/20% SiCw; the material was manufactured

in 1985. It was wire-cut at GSFC into two beams, one of which is considered in this report. The

wire-cutting operation left a gray surface finish; also, the beam was bent into a slight arc. This

specimen is labeled GRAY (_1).

General Electric Company 2 (GE) provided us with three specimens of 6061-T6 aluminum alloy

with 400-/0 silicon carbide in the form of roughly equiaxial particles of 1 #m to 5 #m diameter: we

denote this material as AI+SiCp. They obtained this material from ARCO in 1986. GE fashioned

these into rectangular beams with the same lengths and widths, and with thicknesses decreasing in

the ratios 1/VriO, which gives three well-spaced fundamental vibrational frequencies. These beams

have bright, near mirror finishes, and are referred to as THICK (#2), MEDIUM (_/_3), and THIN

(_4), respectively.

1ARCO Chemical Company, Advanced Material, Route 6, Box A, Greet, SC 29651.
2The specimens were provided in 1986 by the Space System Division, which was then at Valley Forge Space Center,

P.O. BOX 8555, Philadelphia, PA 19101.





Chapter 3

Methodology and measurements

Most of the work involved in deforming a metal or a metal composite is stored as recoverable (i.e.,

elastic) energy. In the absence of joint friction and air friction, it is unusual to lose as much as 0.1%

to damping, and losses of less than 1 part in 10 -7 have been observed in specialized circumstances

such as massive aluminum beams at a temperature of about 4 K. Hence, it can be difficult to

measure the damping modulus in any experiment that involves a direct comparison with the elastic

modulus. But relatively small damping implies that specimens can be excited into well-defined

resonances. At each resonance, the elastic forces caused by deformation exactly balance the inertial

forces caused by motion, leaving only the damping forces to balance the driving forces. By observing

the outcome of the latter balance, the damping can be measured -- this is the driven resonance

method. Alternately, if the driving force is stopped so that the specimen is left in free (not forced)

oscillation, then the damping forces slowly dissipate the elastically stored energy. By observing the

rate of this dissipation, the damping can be measured -- this is the free decay method. As a bonus,

the elastic modulus can be calculated from the frequency of oscillation.

The main drawback of either method is that the damping force can be measured only at each of

the resonant frequencies of the specimenl It is as if the spectrum of resonant frequencies used in a

given experiment is a set of narrow "viewing windows" into the complete frequency dependence of

the damping force. This drawback can be overcome when it is possible to interpolate the behavior

between observed frequencies; hence, it is desirable to work with a set of specimens of the material of

interest, shaping the specimens so that they have a wide range of overlapping resonant frequencies.

A material has a distinct elastic modulus for each distinct mode of deformation. For example,

the bulk modulus controls changes in volume that do not change the shape of an element. For an

isotropic material, all moduli can be related to two moduli which we shall choose as the Young's

modulus E and the shear modulus G. Correspondingly, a material has distinct types of damping,

one for each distinct mode of deformation. For example, it is well-known from ultrasonic absorption

studies that the damping of shear waves is different from the damping of longitudinal waves. We

must expect that, in general, the damping of the longitudinal modes of a beam is different from

the damping of the transverse and the torsional modes.

In summary, we fashion the materials of intcrest into beams of uniform cross sectioll _-_,'i study

both their driven and their free resonances in order to determine the set of elastic rnc_ t_ _I_d the

damping factors for various deformation modes of the material.

7



3.1 The dimensions, densities, and void contents of the speci-

mens

A metal matrix composite is characterized by both the volume fraction (W') of the reinforcing

material and by the volume fraction of voids that invariably result from current manufacturing

techniques. As little as 2% voids can cut in half the ultimate strength of an A1+30% SiC compos-

ite [13]. The effect of voids upon the moduli is much smaller: the relative decrease is roughly the

void fraction. If the amounts of matrix and reinforcement are known, either from the manufactur-

ing conditions or from an analysis, then the void content can be determined from measurements of

the density [13]:

_'JZvoids = l -- [pspecimen -- (PSiC -- PAl) " )'_SiC] . (3.1)
PAl

The standard technique for precise density determination involves weighings in air and in a liq-

uid. However, these specimens were accurately machined to be rectangular beams, which allowed
accurate determination of their volumes from their dimensions. The width and thickness of each

specimen were measured at thirty positions with a micrometer, and the lengths were measured

with a traveling microscope. Each beam was weighed on each of three laboratory balances. The

dimensions, the masses, and the computed densities are listed in Table 3.1.

mass

(g)

Table 3.1: Measured Masses and Dimensions, and Computed Densities

CONTROL beam

(#o)
0% SiC

13.931 5

+0.004%

GRAY beam

(#1)
207o SiC

25.814

+0.017o

THICK beam MEDIUM beam THIN beam

(#2) (#3) (#4)
40% SiC

69.427 9 22.794 5 7.410 9

+0.00060% -t-0.002 47o -I-0.003 9%

length 25.405 30.45 27.932 27.932 27.934

(cm) ±0.001% ±0.10% ±0.001% ±0.0017o ±0.001%

width

(cm)
thickness

(cm)

1.272

±0.03%

1.515

+0.07%

1.2692 1.2712 1.270 2

±0.024% ±0.0247o ±0.024%

0.1592 0.199 0.6822 0.2233 0.0729

±0.20% -I-0.5% 4-0.046% ±0.13% ±0.41%

2.708 2.81 2.871 2.875 2.866

±0.3% ±0.8% 4-0.0727o 4-0.167o ±0.43%

density

(g/cc)

Density (weighted average, corrected to vacuum)

0% SiC _ (2.71 ± 0.01) g/cc

20% SiCw (2.81 + 0.02) g/cc

40% SiCp (2.872 ± 0.002) g/cc

Solving Equation 3.1, using the standard values PAl ---- 2.71 g/cc and Psic = 3.21 g/cc, gives

AI+207O SiCw: W'voi& = (0 4- 1)%

A1+40% SiCp: W'voids = (1.4 4- 0.2)%.

These results fall within the range expected for these materials.

8



3.2 Vibrational spectrum and moduli of beams

Formulas relating bending moduli to the vibrational spectrum of thin beams of circular or rect-

angular cross section were theoretically established and experimentally verified by the mid-1800's.

Recommendations that the vibrational spectra be used to measure bending moduli date from the

first studies in 1740 by L. Euler and D. Bernoulli. But it was not until about 1935 that this method

began to be used in a routine manner [16]. For the beams used in practice, it is often necessary

to introduce corrections to the classic results. 1 Reliable methods of doing this were suggested by

Pickett in a painstaking review of relevant theory [11] and confirmed in a detailed series of exper-

iments by a group led by Spinner [17, 15, 19]. These methods have achieved moduli accurate to

within 0.01% under ideal circumstances; they are summarized in Reference [16], and in the related

standard method C215-85 [1] of the American Society for Testing and Materials (ASTM). We used

the procedures of Reference [16] to reduce our data.

A block diagram of the apparatus is given in Figure 3.1. Our specimens were fashioned into beams

of rectangular cross section, and a small iron disk (mass per disk = 0.090±0.001 g) was attached to

each end. Each beam was electromagnetically excited at one end, and its motion was electromag-

netically detected at the other end. The driving frequency was varied until a resonance frequency

was excited. The position of the exciter/detector modules influenced the class of modes excited:

transverse (i.e., flexural), longitudinal (i.e., extensional), or torsional modes. Each beam was sus-

pended upon lightweight threads positioned at the n th vibrational nodal lines, while the beam was

driven at its n th modal frequency. The loading effect of the iron disks was accounted for with the

procedures of Reference [16]. (The THIN beam's frequencies required the largest corrections: 5%;

these corrected frequencies are reliable to within 0.1%. The THICK beam's frequencies required the

smallest corrections: 0.5%; these corrected frequencies are reliable to within 0.03%.) Frequencies

were derived from a frequency generator with a range of 1 #Hz to 20 MHz and a resolution and

accuracy of 1 #Hz below 100 kHz and 1 mHz above 100 kHz.

Vacuum
chamber

Driver coil m ,,la,

iiiiii iiii i iii  iiii!     ii iiiiiiiiii!!iiii i     iii i i   iiiii i    ! i  iii   i!!i ii  i      iilii

i currentAmpli erI I Vo'tage mp'i erI
4, ',l,'

I req en y°ene at°rI v° tme  rI

Specimen,
,,,,,

with iron disks

f" Pickup coil

Figure 3.1: General diagram of the experimental apparatus.

1The necessary corrections are still not rigorously known: see Appendix A.
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3.3 Damping measurements

There are a number of measures of damping in current use [25, 5, 8]. We will use the damping factor

g; some others are defined in Appendix B. Vibrational damping was studied using two methods,

driven resonance and free decay.

Driven resonance The beam was driven into resonance at its n th mode and both the amplitude

of its motion fl, and the frequency of this resonance fn were recorded. Then the driving frequency

was raised until the amplitude of response dropped to _4/_ where _ is a chosen constant such as

2, and this new frequency f+_ was recorded. Finally, the frequency was lowered below fn until the

amplitude again dropped to ¢4/_; this is f_,_¢. The damping factor for this mode is

1 ( f+_ - f_'_ ) (3.2)g" = 1 L "

Our usual procedure was to use half-amplitude points (_ = 2), and so

1 f_,2 fn,2 (3.3)
g n -_ --_

However, many workers use detectors that respond to the intensity of the vibration _42 (this is

proportional to the power) and not its amplitude ¢4. For half-power points, _ = V_, and

g-= $.

We have found the choice _ = 2 to be most convenient.

(3.4)

When measured in air, the resonant frequency of a given mode was typically stable to within 0.1%

for times on the order of an hour, since the room temperature was typically stable to within about

0.5 °C during that time. However, promptly upon beginning a pump-down, the resonant frequency

would begin to drop and not stabilize until after several hours. This effect is probably related

to a temperature change of the beam. The frequency shift would often amount to a significant
fraction of f+ - f- in the time required to make a measurement; hence, corrections for these shifts

were made and frequently checked against measurements made after equilibrium had again been
established.

To test that the behavior of the beams we studied was linear, we repeatedly varied the driving

force by factors of 10 to 100. We found no changes in either the resonant frequency or the damping

factor. However, we did find a detectable decrease in the resonant frequency when the driving force

was increased by more than 100 times the value usually used; this corresponded to strains of 0.003

or larger.

Free decay The frequency of the excitation was adjusted to produce a resonance at the n th

mode, and then the excitation was suddenly terminated. This frequency fn and the time Tn for the

amplitude of the freely decaying oscillations to decrease by the fraction 1/e _ 0.3679 were observed.
Then

gn = 1/(_r¢nfn). (3.5)

10



We frequentlytestedthe time dependenceof the decaying amplitude, always finding it to be an

exponential decay from amplitudes corresponding to strains of roughly 0.002 to several orders of

magnitude smaller; hence, the damping is accurately linear over this range of strains.

Comparison of methods We have found that detector noise and other experimental sources of

errors affect the driven resonance and the free decay methods in opposite ways, so that agreement

between them is evidence that these errors are unimportant and that the value of gn is reliable.

Initially, the results for driven resonance differed from the results for free decay by more than

50%, which forced a search for sources of errors. The major errors were a noisy voltage amplifier

and incorrect zero positions in both the voltmeter (used in AC mode in the driven resonance

measurement) and the pen recorder (used in AC mode in the free decay measurement). After
eliminating errors, we obtained agreement to within about 3% to 10% for all the values of gn

reported here: we use 10% as the nominal value for the uncertainty in g.

Effect of the beam's suspension Several findings confirm that our method of suspension did

not introduce detectable damping:

* The damping measured for aluminum containing no silicon carbide is in good agreement with

Zener's thermoelastic model for damping factors as low as g = 10-5 ; hence, damping due to

the supports is less than 10-6 .

• In one series of studies, the threads were positioned at various distances from the calculated

nodal positions. The damping increased quadratically with displacement from the nodal

positions. The increase was insignificant whenever the threads were within about a millimeter

of the calculated nodal lines. This criterion is easily met in practice. (See Figure 3.2.)

These studies were conducted both in air and in a vacuum of better than 10 -6 torr. Air damping

is a complicated phenomena; there is currently no adequate theory for rectangular beams vibrating

in air. The safest course is to remove the air, rather than to attempt to correct for the damping

caused by air.

Other methods Zener [25] studied reed specimens vibrating in a vacuum. Granick and Stern [4]

determined the vibration amplitudes at the root of a center-driven cantilever and at its tips, and

determined the damping factor from the ratio of these amplitudes, both in air and in a vacuum.

(This is a version of the magnification factor method: see the definition of QM in Appendix B.)

Professor Crawley and his students at the Massachusetts Institute of Technology have studied a

freely vibrating beam in free-fall in a vacuum [3]. These beams were well decoupled from their envi-

ronment except for attached strain gauges used to observe the vibrations, which did not introduce

detectable damping, since the observed damping was noted to be independent of the number of

strain gauges. Each of these workers has also studied the transverse modes of standard aluminum

and has found it to be described by Zener thermoelastic damping.

Data The observed frequencies and observed damping factors of the various specimens are listed

in Tables 3.2, 3.3, and 3.4. The accuracy of the frequency values is about -t-0.3 in the last digit

11
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Figure 3.2: The observed damping factor versus the displacement of the support threads from the nodal

positions computed using uniform beam theory for the THIN beam vibrating in air in its fundamental

mode. The minimum is at a displacement of -I-1.33 mm from the computed nodal lines, in the direction

of the iron disks: this is the shift in the nodal lines expected because of the mass loading of these disks.

Note that the scatter in the damping factor is roughly -I-0.3% for this set of measurements.

quoted. The accuracy of the damping factor values is roughly 4-3%. All measurements were made

at room temperature: (22 4- 2) °C.

Table 3.2: Measured Longitudinal Frequencies and Dampings for the THICK Specimen

Beam Vibrational

mode number,

n

Observed

frequency,

fn,obs

(Hz)

Observed

damping factor,

gn,obs
(units of 10 -4 )

THICK 1 12 906.0 0.462

(#1) 2 25783.4 0.651

3 38650.8 0.532
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Table3.3: Measured Torsional Frequencies and Dampings for the MEDIUM and THICK Specimens

Beam Vibrational Observed Observed

mode number, frequency, damping factor,

n fn,obs gn,obs

(Hz) (units of 10 -4)

THICK 1 6 057.39 2.28

(#2) 2 12 090.50 1.67

3 18 124.46 2.36

MEDIUM 1 2 537.40 1.39

(#3) 2 5052.04 1.57

3 7 579.86 4.75

Table 3.4: Measured Transverse Frequencies and Dampings for the Specimens

Beam

CONTROL

(#o)

G RAY

(#I)

THICK

(#2)

MEDIUM

(#3)

THIN

(#4)

Vibrational

mode number

n

1

2

3

4

5

6
7

8

9

10

Observed

frequency

fn,obs

(Hz)
124.7

343.8

673.5

132.4

384.4

762.7

645.34

1770.84

3450.7

5 661.2

209.50

577.37

1 130.85

1870.0

2 793.7

64.9

184.9

363.3

602.4

902.7

1264.7
1683.4

2167.0

2711

3313

Observed

damping factor

gn,obs
(units of 10 -4)

14.9

5.95

3.10

10.5

3.4

2.2

1.32

0.96

1.16

3.65

2.24

1.43

1.03

0.86

19.3

15.5

12.0

8.73

6.71

5.11

Note: Cases for which there are no measurements are marked with a star (*).
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Chapter 4

Material properties

Zener's theory of thermoelastic damping predicts a damping factor that depends completely upon

the Young's modulus E and certain thermal properties: the linear thermal expansion a = d In £/dT

where l is a linear dimension of the specimen such as its length, the volume specific heat c, and

the thermal diffusivity _td = kT/c where kT is the thermal conductivity. (See Appendix C.) The

volume specific heat c is computed from the more commonly tabled mass specific heat c [m] using

c = pc [m] where p is the density. Values for all of the required properties are in Reference [14];

however, the scatter in the reported values for a and especially _td is large, probably because

commercial processing was still variable when the data used in Reference [14] were being taken
(,-_ 1975-1982). GE provided us with values for ¢z, the mass specific heat c [m], and _td for the

specimens they sent us. We also measured c_ for both the 20% SiCw and the 40% SiCp specimens.

These data are plotted in Figures 4.1 through 4.3.

The values for Young's modulus are shown in Figure 5.1 in the next chapter, along with the results

obtained from the vibrational spectra of the specimens reported here.

There is no completely reliable model for computing the thermal expansion of these composites

from the values of the component materials, and so we must rely on the data alone. We have the

following at 22 °C. For 0% SiC content, t_0% -- (23.2 4- 0.5) x 10-6/ °C for both pure aluminum

and 6061 alloy. For 20_ SiC content, all three data sets (those from GSFC, from GE, and from

Reference [14]) are in agreement to within their respective uncertainties; the weighted average is

a20% -- (14.0 4- 0.9) x 10-6/ °C. For 40% SiC content, the GSFC data is in good agreement with

that of Reference [14]; the GE value is higher than these other values, but not by more than its

quoted uncertainty: the weighted average is c_40% = (12.5 4- 0.8) x 10-6/ %3.

The thermal expansion of pure aluminum and of 6061 alloy increases noticeably over the temper-

ature range shown in Figure 4.1; however, no increase is observable for 20% or 40% SiC content

for the GSFC data or for 40% SiC content for the data from Reference [14]. Indeed, the data from

Reference [14] indicate a decrease in the thermal expansion of 20% SiC content material. More
work is needed here.

The mass specific heat can be calculated from the rule of simple mixing, since there are no chemical

interactions between the aluminum and the silicon carbide: this rule is usually reliable to within
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Figure 4.1: The thermal expansion of AI+SiC versus temperature for several values of volume fraction
of SiC. The solid curve at the top of the plot is for pure aluminum: the data are from Volume 12 of

Reference [23]. The light and dark gray bars summarize measurements made by Mr. Sanford (Code
313, GSFC)for 20% SiC and 40% SiC, respectively. The open circle and closed circle with error bars,

at 22 °C, were supplied by GE for 20% SiC and 40% SiC, respectively. The remaining open circles and
closed circles are from Reference [14] for 20% SiC and 40% SiC, respectively.
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Figure 4.2: The mass specific heat of AI+SiC at 25 °C versus SiC fraction. The value for pure aluminum

is shown as a diamond at zero SiC content: the data are from Volume 12 of Reference [23]. The closed
circles are from Reference [14]. The open circle for 40% SiC was supplied by GE. The continuous

curves are computed using the simple mixing model and the value 0.661 joule/(g °C) for pure SiC at

22 °C; this also is from Reference [23]. The gray band is for _T'void ---- 0% and the dotted line is for
")';-_'void= I0%.
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Figure 4.3: The thermal diffusivity of AI+SiC at 25 °(3 versus SiC fraction, for 6061 aluminum. The

data are from References [3, 4, 14], and GE. Also shown as a filled disk is the value for pure aluminum

reported by Volume 10 of Reference [23].

roughly 5%. Thus,
[m] [,..1

C[m] ____.X[An_] • C[A_] q- XsicCsic ,

where z['_ ] is the mass fraction of aluminum (etc.), and

(4.1)

.,.["-] . x[ _]1 = X[A"_] +.oSi C. void " (4.2)

Expressing this in terms of the volume fraction of the silicon carbide fraction and of the voids, we
have

c[m] = c[._] .,[m]"SIC
psic _si_ + • (4.3)

1 + PA, (1--]2"_SiC--'_"_Cvoid) 1 -[- PAl (1--_"SiC--_'_Cvold)pslc _JCsic

Indeed, the data reported in Reference [14] agree with the mixing rule to within 4% or better.

However, the value reported by GE is some 15% lower than the estimate provided by the mixing

rule estimate. Since the actual volume fraction of the voids is (1.4 -4- 0.2)% for this material, then

this discrepancy is not caused by void content.

There is no reliable model for computing the thermal diffusivity of the composite from its con-

stituents, nor are reliable values available for the individual constituents; thus, we must rely on

data alone. Certain general principles apply and allow some sense to be made of the observed

trends. The thermal diffusivity _td of a metal is a sensitive function of the mobility of its con-

duction electrons; this mobility decreases as the lattice is made irregular by the introduction of

alloying metals or defects. The thermal diffusivity of single crystal pure aluminum is 0.92 cm2/s at

25 °C. This drops to 0.82 cm2/s for sheet annealed 6061 alloy and to 0.74 cm2/s for heat-treated

6061 alloy. (The purpose of the heat treatment is to produce controlled precipitation of the low

concentration-alloyed materials to arrest the motion of dislocations.) Cold working the heat-treated
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alloy introduces dislocations which reduce the mobility of the electrons. Thus the appropriate ref-

erence value for 6061 aluminum with zero volume fraction of silicon carbide is about 0.62 cm2/s as

shown in Figure 4.3, since the aluminum in the composite is cold-worked during consolidation.

The thermal conductivity of silicon carbide single crystals is in the range 0.5 to 5 watts/(cm ¢C)

at 22 ¢C depending on crystalline perfection (see Volume 2 of [23]), and so the thermal diffusivity

is in the range 0.2 to 2 cm2/sec. Thus, addition of silicon carbide to aluminum can either lower

the thermal diffusivity or raise it, depending on the particular choice of the starting materials; the

range of variation is roughly a half order of magnitude. The results shown in Figure 4.3 indicate

almost no change at all in thermal conductivity as silicon carbide is added: this result is presumably

sensitive to the choice of the particular silicon carbide and aluminum that is used.

These data allow computation of the Zener damping. See Table 4.1 for the values of gMax and

fZener, along with the values chosen for the properties discussed in the previous paragraph. (In this

Table, the volume specific heat is computed from the mass specific heat and the density: c = c[m]p,

values for the density p and the thickness h are in Table 3.1, and values for Young's modulus are

in Table 5.1.) The variation of gMax with "P_'SiC is found to be weak. This is because the increase

in E is compensated by the decease in a 2. Hence, the Zener damping of these composites is about
the same as for the base aluminum itself.

Table 4.1: Thermal Expansion c_, Volume Specific Heat c, Thermal Diffusivity I,:,th, and the Zener
Damping Constants gMax and fZener

Beam

CONTROL

GRAY

THICK

MEDIUM

THIN

o_

10 6

23.2 4- 0.5

14.9 4- 0.9

12.5 4- 0.8

12.5 4- 0.8

12.54-0.8

2.41 4- 0.04

2.33 5:0.09

2.24 4- 0.13

2.24 4- 0.13

2.24 -t- 0.13

tCth gMax

(cm2/sec) (dimensionless)

0.65 4- 0.10

0.59 4- 0.05

0.62 4- 0.03

0.62 4- 0.03

0.62 4- 0.03

fZener

(Hz)

0.00227 4-3% 40 4-15%

0.00160 4-7% 23 4-10%

0.00153 4-9% 2.0 4- 5%

0.00153 4-9% 20 :l:5%

0.001 53 4- 9% 183 _ 5%
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Chapter 5

Results and comparisons with
literature

Elastic moduli were calculated as discussed in Appendix A and are shown in Table 5.1 and in

Figure 5.1. The Timoshenko corrections to the transverse vibration spectra were appreciable for

all but the THIN beam. The moduli determined from each of the frequency spectra for each of the

40% SiCp beams are consistent, and so only the weighted averages and uncertainties are listed in

Table 5.1. For the 20% SiCw beam, the shear modulus G and Poisson's ratio were not determined

because the GRAY beam was slightly bent, which prevented interpretation of the torsional modes

using the formulae of Appendix A.

The results for Young's modulus agree with those obtained using conventional stress-strain meth-

ods [9] shown in Figure 5.1.

The transverse damping of the THIN beam (#4; 40% SiCe) shown in Figure 5.2 is dominated by

Zener damping. This is shown by the agreement between the measured data and the theoretical

Zener damping curve computed from Equation C.3 with no adjustable parameters. The curve

shown in Figure 5.2 was not adjusted to fit the data displayed there, but was computed from the

measured thermoelastic properties and beam dimensions. The differences between the experimental

and theoretical curves visible at the lower frequencies shown in Figure 5.2 have been traced to an

Table 5.1: Elastic Moduli Computed from Vibrational Frequencies, and Poisson's Ratio Computed from

Composition E G ] Poisson's ratio

(1011 dynes/cm2) (1011 dynes/cm2) I = E/(2G) - 1

A1 6.9 :E 0.1 . .

A1+20% SiCw 11.4 :t: 0.1 . *

A1+40% SiCp 14.9:1:0.1 5.60 =1:0.03 0.31 ± 0.01

E/(2G) - 1

Note: Cases for which there are no measurements are marked with a star (_).
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unstiffening effect provided by the electromagnetic driver and sensor: these devices were found to

intrude on the motion of this beam by providing a negative spring constant. This showed up in the

details of the frequency spectrum as well: the lowest frequency was displaced upwards by several
Hertz.

Results for all transverse modes are shown in Figure 5.3. The data are normalized by scaling the

observed damping by the Zener damping and the actual frequency by the Zener frequency. Zener

damping is seen to describe the observed damping until the scaled frequency differs by more than an

order of magnitude from the Zener frequency. Then a second sort of damping, roughly independent

of frequency, becomes visible. This excess damping, gobs -- gZener, is more clearly visible when it is

plotted directly: this is done in Figure 5.4.
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Figure 5.3: The scaled transverse damping versus frequency for all beams. The observed damping is

divided by the Zener damping and the observed frequency is divided by the Zener frequency.

The Zener damping of aluminum is substantially unchanged by the addition of silicon carbide: the

decrease in the thermal expansion _ compensates the increase in the Young's modulus E. We do

not know what is causing the other (i. e., the excess) damping. It is not present in aluminum beams

that do not contain SiC, so it is certainly caused by the SiC. Since the specimen with 20% SiCw

shows about as much damping as the specimens with 40% SiCp, whiskers may be more effective

than particulate SiC in producing damping. Perhaps this excess damping is simply another instance

of Zener damping caused by thermal currents, where the heating is at the M/SiC interface during

beam deformation (it is the aluminum that deforms--the silicon carbide does not), and the relevant

currents flow through and around the SiC phase, as well as between neighboring SiC inclusions:,

hence, a broad distribution of thermal relaxation times would be expected.

Ms. Timmerman et al. [20, 14] have measured the transverse vibrational frequencies and damping

of AI+SiC beams using a method similar with the one described here. The Young's moduli are in

agreement with this work. They consistently measure a greater damping factor than reported here;

however, their experiments were carried out in air. They did not analyze their results in terms

of Zener's damping mechanism. They did not consider longitudinal and transverse vibrations and

associated dampings.

21



e-

N

"O

¢-

0_

£3

e_
LL

O_
r-

E
e_
E3

2* 10 .4

1.5.10 .4

1,10 -4

5,10 -s

I A Thin
O Medium
X Thick

' ' ' ' i

[

t i I i i i i I i

103

Frequency (Hz)

O0 I i i i i I i2 104

Figure 5.4: The computed excess transverse damping versus frequency for the 40% SiC beams.

5,10 .4

4,10 -4

,.Z

o 3.10_4
U-

r"

_- 2.10 .4
m
121

1,10 .4

Medium, torsional
Thick, torsional

....... N ....... Thick, longitudinal

Tn, Med, & Tk, trans

:_ .......... _("'"X

102 i i i i i i ill i l i i , , ,,i i i i i i i i10 3 104 10 5

Frequency (Hz)

Figure 5.5: The observed damping versus frequency for the torsional modes of the MEDIUM and THICK

beams, and the longitudinal modes of the THICK beam. The excess damping of the transverse modes

of the THIN, MEDIUM, and THICK beams is summarized as a gray band whose width measures the

scatter in these values.

22



Chapter 6

Conclusions

Material damping can be important for orbital operations requiring control of vibrations. The

material damping of the transverse vibrations of aluminum beams shows a Zener damping part

which varies with the beam thickness and vibration frequency and can be as large as g _ 2 × 10 -3

at one particular frequency, the Zener frequency, which depends upon the beam's thickness. Zener

damping gZener drops as the beam's transverse frequency departs from the Zener frequency in either

direction, and eventually some other kind of damping will become visible.

For aluminum reinforced with discontinuous silicon carbide in the form of whiskers or powders, the

Zener contribution to the transverse vibrational damping is almost unchanged from that of the base

aluminum alloy. However, there is an excess damping which is roughly independent of frequency

and modal type, with g _ 10 -4. Hence it can be misleading to use a single handbook value of g

without regard to the frequency or to the modal type (i.e., longitudinal, torsional, or transverse

deformations).
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Appendix A

The vibration of thin beams

The vibration spectrum of a beam has been studied for centuries, and we now know that there

are no exact formulae that we can use to reduce the experimental data obtained above; rather, we

must use approximations. The purpose of this section is to present some useful approximations.

When the material is idealized as perfectly elastic and linear, and air loading and support loading

are ignored, then the theory of elasticity provides the equations of motion. Then the ignored

loadings can be reintroduced by means of perturbation theory. No exact solutions to even the

simplified, idealized equations have been found. The current approach is to use the solution to the

thin uniform beam equations that predate the theory of elasticity, and to multiply this solution by

a series of correction terms. The nature of the correction terms is guided by approximate results

from the theory of elasticity, but the actual values are taken from experiment. The situation is even

less fundamentally founded when more realistic material models are used, such as those involving

anelasticity (e.g., damping) and nonlinearity.

A.1 Transverse vibrations

Thin beam theory supposes that the shape of the beam is accurately described when the vertical

displacement of its midline 7/is known for each position x from one end to the other; i. e., when _(x)

is known over the interval -l/2 < x < +l/2. And it supposes that this displacement is described

by the equation of motion

pA _-_ ] =- EI , (A.1)

where all support forces and air damping forces are ignored, and where E is Young's modulus, I is

the geometrical moment of inertia, p is the mass density, and A is the cross section area.

A.1.1 Uniform thin beam theory

The Uniform Thin Beam (UTB) model corresponds to the important case that the beam's prop-

erties are uniform over its length, or at least that EI and pA are uniform. Then the solutions
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are linearcombinationsof thespatialtrig andhyperbolictrig functions,cos(kx),sin(kx),cosh(kx),
and sinh(kx), multiplied by a linearcombinationof the temporaltrig functions,cos(2_rft)and
sin(2xft), wherek is the wave number and f is the frequency.

We are interested in the case in which both ends of the beam are free. Thus, there is no bending
moment at either end (02rj/OX 2 vanishes at each end), and there is no shearing force at either end
(03_/0x 3 vanishes at each end). It is then convenient to work with the normalized wave number

= kg, since it is dimensionless.

The symmetric solutions are

cosh(_[ps]x/e) .sin(2_fNt + ¢),
,j[/](z,t) = A- L_ + cosh(_[p_]/2) (A.2)

where n[p_]is the normalized wave number of the pth symmetric mode and f[s] is the frequency of this

mode. The amplitude ,4 and phase factor ¢ are determined by initial conditions. The normalized

wave number for the symmetric modes satisfies the equation

tan(n[_]/2) + tanh(t;[_]/2) = 0; (A.3)

the roots of this equation cannot be found exactly using analytic methods; rather, numerical meth-

ods must be used. Values for the first two p modes are shown in Table A.1. This table also contains

the antisymmetric results. Both results are reported both in symmetric, or antisymmetric, form

using the p mode number and also without regard to symmetry by using the n mode number. The
approximate expression

= (4p- 1). (A.4)

is accurate to better than six significant figures for p > 2, and so tabled values are not needed then.

The last column of Table A.1 shows the rate at which t_, converges to this approximate expression,

and shows that the symmetric and antisymmetric values approach this approximate expression's
values from opposite sides.

The nodal lines are then found as the roots of the symmetric solutions given by Equation A.2. It

is experimentally convenient to describe the position of each nodal line by its distance inward from

the end of the beam; thus, the qth node of the pth mode is at ¢[ps,]. l, measured inward from the

end of the beam, where ¢_]q is dimensionless. The dimensionless fraction is zero at the end of the

beam, ¢ = 0, and is one half at the middle of the beam, , ¢ = 1/2. The dimensionless locations are

shown in Table A.2 for the first two symmetric modes. This table also contains the antisymmetric

results, and expresses these both using the p mode number and also without regard to symmetry

by using the n mode number. An approximate expression for ,_[s] is't'p q

(¢_])app = (2q - 3/2)/(4p - 1) where q = 1, 2,... ,p, (A.5)

where q -- 1 corresponds to the outermost nodal line, and q -- p corresponds to the innermost one.

This is sufficiently accurate that it can be used to extend tile Table when this is necessary.

The antisymmetric solutions are

[sin(a[a]x/£) sinh(a[p"]x/_) ] sin(2_r fp[_]t ,CJ( ,t)=.4. ÷ J +¢) (A.6)
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TableA.I:

n-mode

Normalized Wave Numbers for the First Four Modes

p-mode _[s] _[pa] K.n" (2/7r)

X,s

l,a

2,s

2, a

4.730 041

10.995 608

7.856 205

14.137 165

3.011 237

4.999 505

7.000 021

8.999 999

Table A.2: Normalized Positions of the Nodes of the First Four Modes

n-mode

1

2

3

4

p-mode

X,s

l,a

2,s

2,a

¢[sl
P,q

0.2242

0.0944, 0.3558

¢[a]
P,q

0.1321, 0.5000

0.0736, 0.2768, 0.5000

where n[a] is the normalized wave number of the pth antisymmetric mode and f[_] is the frequency

of this mode. The amplitude ,,4 and phase factor ¢ are determined by initial conditions. The

normalized wave number for the antisymmetric modes satisfies the equation

tan(a[pa]/2) - tanh(_[_]/2) = 0; (A.7)

the roots of this equation cannot be found exactly using analytic methods; rather, numerical meth-

ods must be used. Values for the first two p modes are shown in Table A.1. These are reported both

in symmetric/antisymmetric form using the p mode number and also without regard to symmetry

using the n mode number. The approximate expression

(n[p"])app = (4p + 1). (lr/2) (A.8)

is accurate to better than six significant figures for p > 2.

The nodal lines are then found as the roots of the antisymmetric solution. These are shown in

Table A.2 for the first two antisymmetric modes. An approximate expression for these roots is

(,_[a]_ . (A.9)•rp,q,app = (2q - 3/2)/(4p + I) where q = I,2,.. ,p + 1 ,

where q = 1 corresponds to the outermost nodal line and q = p + 1, the innermost one (which is

always precisely at the middle of the beam: _[_] = 1/2).
"t'p,p+ 1

For the outermost node, q = 1, the correct position is always larger than the approximate one; for

p > 2, the value 1.322 x (¢p,1),pp is accurate to the given number of figures for both the symmetric

and antisymmetric cases. For the next node, q = 2, the value 0.9962 x (¢p,2)app for p > 2 is accurate

to the given number of figures for both the symmetric and antisymmetric cases. The errors for

q > 2 are less than 0.009% for both symmetric and antisymmetric cases.

These nodal lines, at each of which the amplitude of vibration vanishes, can be reliably located by

gently touching the beam at trial locations while it is in oscillation; only when the beam is touched
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at a nodal linewill it continueto oscillate.Themodenumbern can be determined in this way for
any given mode of oscillation.

The vibrational spectrum of a uniform thin beam (UTB) suspended at its nodal lines is

snUTB= ( 1 rg /E_ 2 (A.IO)

where rg = radius of gyration = V/_ in general, and rg = h/v/-_ for a beam with rectangular

cross section and a thickness h. (The other quantities have been defined earlier in this section.)

A.1.2 Rayleigh's perturbation theory for thin beams

Rayleigh's perturbation theory I is useful when the beam is not perfectly uniform:

In = fUTB . 4/1+ f _(EI) " (u_) 2dx _ $ _(pA) . u 2 dx (A.11)
Jn V (El) f(u_) 2 dx (pA) f u 2 dx '

where

E is Young's modulus,

I is the beam's geometrical moment of inertia,

p is the beam's mass density,

A is the cross sectional area of the beam,

r+el2 ,,
qo = J-e�2 qt x) dx/i is the beam-averaged value of q(x), and 5q = q(x) - qo is the deviation
from this average, where q is either EI or pA,

un(x) = transverse displacement of beam at the position x in the n th mode when calculated

for a uniform thin beam with (EI)o and (pA)o, and

u" = 02u/Ox 2.

In particular, it follows from Equation A.11 that attaching the masses me and mr at the left and

right tips of a beam of mass mbeam will lower all frequencies. In practice, these masses are not

mounted precisely at the tips, but a distance 5 inwards from the tips. The new frequency is

Sn,_m = fUTB. 1/1 _ [4 - an )in + fin X 2 +'" "]" [rne---+--mr I ,
V [ mbeam J

where Xn = 5/(¢n,1 _) is the ratio of the inward distance of the masses me, mr to the first nodal

line in the n th mode. This result is only valid as long as the masses are closer to the tip than the

first nodal line. The dimensionless coefficients depend on n, but weakly enough so that we can

use an = 8.31 and fin = 4.31 for all n, for all practical purposes. The tips of the beam execute a

greater motion than any other part of the beam since they are free, and so adding mass there is

1See Equation 1 in §185 on page 292 of Volume 1, [7].
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especiallyeffectivein loweringthe frequencyof thebeam.This is thereasonfor thefactor "4." As
the modenumberincreases,the nodalline approachesthe locationof the massesm_, mr at 5 > 0,

so the effect of these masses decreases. This is the reason for the -(_n Xn term. Indeed, the masses

mr, mr have no effect at all in the context of this model 2 when they are located at the nodal line.

The fin X2_ term corrects the linear effect described by an Xn to give a better description of the
location of the nodal line.

Some thin beams are not uniform in their properties. Then the frequency spectrum is not described

by Equation A.10, but Equation A.11 can be used to carry out a kind of fourier analysis 3 of the

distribution of the irregularities along the beam. This was not necessary for the beams considered

in this report and so will not be developed further here.

A.1.3 Timoshenko beam theory

Sometimes a beam is not thin enough for the UTB model to provide an accurate description of

its vibration spectrum. As the thickness increases, the effects of rotational motions and shear

deformations become important. The extension of classical thin beam theory to include these

effects is called Timoshenko beam theory (TIM). 4

Timoshenko showed that the frequency of the n th mode of a beam whose ends are both pinned is

Z t; ]rg + O(k_,_) , (A.12)(f_)WIM,PP = (f_)VW_,PP. 1-- 1 + _T_MG

where (f_)VWB,PP __ [(EI)/(pA)]I/2 (a_P]/l)2 is the frequency of the n th mode of a pinned-pinned

uniform thin beam, and a_P] -- k+,_l = _r, 27r,..., nr where n = 1, 2,... is the n mode nmnber.

The [PP] superscript denotes "pinned-pinned" end conditions.

Since the radius of gyration rg is proportional to the thickness of the beam, and since t/aN --

1/k, = 2_')_n is the wavelength of the n th mode, then (t_nrg/_) 2 -_ [rg/(27r_n)]2; thus, the thin

beam results are recovered as the ratio of thickness to wavelength vanishes. And, for nonvanishing

thickness, the frequencies are lowered below the thin beam values as the wavelength decreases, i.e.,

as the frequency increases.

Analysis of our data requires the frequencies of a beam whose ends are both free. The result has

the same form as Equation A.12, but the numerical values of the aN are different. Timoshenko's

model explains the way in which the observed frequencies of real beams are lower than those given
by the Uniform Thin Beam model. In practice, it is most convenient to fit the observed data to an

expression of the form of Equation A.12, and to extrapolate this to vanishing frequency; this gives

(f_)UTB, which is then used to determine E/p.

2The masses are fastened to the outside of the beam and so they augment its rotational kinetic energy even when

located at nodal locations since the slope is oscillating at nodal lines. The rotational kinetic energy is of order (h/t) 2

and so is ignored for thin beams. Timoshenko's treatment (see the following) includes the rotational kinetic energy

of the beam and thus gives a context for treating this effect which could be visible under certain circumstances.

3The analysis uses the orthogonal family {r/[pd(z),r/[pa](x);p = 1,2,...} rather than the trig functions used by

Fourier.

4Timoshenko independently developed his treatment, publishing it in English in 1921 (see [21]) and again in his

influential texts, including [22]. He later found that it had been independently developed several times, as early as

1859 (see [10]), and then gave full credit to his predecessors. The treatment is still called Timoshenko beam theory•
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Both Timoshenko effects and nonuniform effects were observed for the specimens we tested, but

these effects were small enough to be independent. This permitted each correction to be applied

in turn to relate the observed frequency spectrum to the Young's modulus.

A.2 Longitudinal vibrations

Elementary theory predicts a simple result for the longitudinal spectrum of a uniform beam when

it is suspended at its nodal lines:

--- _i-_ (A.13)fnu TB

where

n = n th mode number,

g = length of the beam,

E = Young's modulus, and

p = mass density.

As for the case of transverse vibrations, longitudinal vibrations also require corrections because of

the thickness of practical beams, and because of deviations from uniformity. These are reported in

[7] and [11].

A.3 Torsional vibrations

Elementary theory predicts a simple result for the torsional spectrum of a uniform beam of circular

cross section when it is suspended at nodal lines:

fnUTB__ n_-g , (A.14)

where

n -_ n th mode number,

= length of the beam,

G -- the shear modulus, and

p -- mass density.

Results for a rectangular cross section are not elementary. These results, as well as corrections

caused by deviations from uniformity, are given in [7] and [11].
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Appendix B

Measures of damping

Fundamentally, a motion is said to be damped when the mechanical energy associated with that

motion is lost to it, going either into some other (macroscopic) motion, 1 or into heat (microscopic

motion). The amount of damping is measured in terms of the rate of loss of this energy.

If a complex structure has an equilibrium configuration, then it is often the case that the "many-

degree-of-freedom" motions around this configuration can be resolved into the superposition of

motions of many "one-degree-0f-freedom" systems; each of these is a simple harmonic oscillator, 2

and each moves independently of all its siblings. The complex systems that are studied in terms of

equivalent simple harmonic oscillators include quantal super strings, nuclei, molecules, buildings,

bridges, spacecraft, the Earth (tides and earthquakes), suns, globular clusters, and galaxies. How-

ever, this analysis tends to fail when there is damping. For many cases met in practice, frictional

forces are proportional to the velocities of the various motions -- this is linear damping. In almost

all cases, linear damping couples the simple harmonic oscillators so that their motions are not inde-

pendent. Hence, an analysis into simple harmonic oscillators may not be a simplification. (And the

situation is even more complicated in many real cases, especially when there are static and sliding

friction in joints, since such damping is not a linear function of the velocity.) Even so, the analysis

of a complex system into a set of damped simple harmonic oscillators is often still made, at least

to provide a vocabulary for speaking of the real motion. And measurements of the damping of the

complex system are often related to the motion of damped simple harmonic oscillators.

In the search for quantities that can be most directly related to the behavior of interest, or quantities

that can be readily determined, many measures of damping have been used, including

¢ = specific damping capacity = AE~/(E)~ = the ratio of the energy lost during a cycle of

sinusoidal oscillation, AE~, to the average energy stored during that cycle, (E)~.

g (or _) = damping factor (or loss factor), defined in the same way as ¢, except that a factor
of 2_r is included in the denominator.

1The scattering of a sound wave by rigid obstructions is an example: some energy of the sound wave is lost to
that wave and transferred into other sound waves, but there is no heating. The motion of a ship through water is
another example: some of the ship's energy is transferred into surface water waves; the motion of the ship is damped,
but there is no heating through this mechanism.

2"Simple" means "one degree of freedom" in this context.
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= fraction of critical damping. (But the actual amount of damping required for criticality

is rarely obtained experimentally; rather, it is estimated assuming that the simple harmonic

oscillator model is valid. Hence, _ is a computed quantity and not a measured one.)

= logarithmic decrement, defined as the natural logarithm of the ratio of a maximum

displacement to the previous maximum (or a minimum to the previous minimum) while the

system is freely decaying: 5 = In [¢4(tmax)/C4(tmax + T)], where .A(t) is the amplitude of the
motion at the time t and T is the period.

Mtt/Mt = ratio of the imaginary part of an appropriate modulus to its real part.

QT = quality factor, defined as n × the number of cycles a freely decaying system oscillates

during the time T that its amplitude decays to 1/e of its starting amplitude: Qr = 7rT/T

where T is the period of oscillation. Other popular but distinct definitions involve the width of

the resonance curve obtained during sinusoidally driven motion (Qw), and the magnification

factor, which is the ratio of the amplitude at resonance to the amplitude in the limit of low
frequency (QM).

¢ -- the phase angle by which the response lags the drive, under sinusoidally driven motion.
Actually, it is tan ¢ that is usually used.

Studies of the motion of a vibrating single-degree-of-freedom system show that its driven motion

can be related to its free motion and, hence, that all these measures of damping are related. When

the damping force is linear with the velocity of the motion, and when the damping is small, as it

is for all the specimens studied here, the interrelations are simple:

g = _ = 2_ = 5/_ = M"/M' = 1/Qr = 1/Qw = 1/QM = tan¢ - ¢/(2_). (B.1)

When the damping is linear, but becomes larger, 3 the interrelations become complex. Indeed, for

critical damping and greater, a freely decaying system no longer oscillates at all, and several of the

above measures (g, y, 5, Qr, Qw, ¢) lose their meaning, since they all involve measurements made

over a vibration cycle. And QM losses its meaning, since there is no longer any maximum at a

resonance. While other definitions can be used under these conditions, there is less agreement

among them. Since we will not need them in this study, none will be mentioned here. More

importantly, such large damping usually couples vibration modes. Then the relation of the driven

motion to the free motion becomes complicated, and is unique for each structure. Hence, the notion

of "single mode critical damping" is something of a fantasy for structures with many degrees of

freedom with large damping: we will not use _. Similar considerations apply for nonlinear damping.

For the beams studied here, the damping is both linear and small. The various modes were

independent, as judged by the absence of any spurious frequencies for the driven tests and by the

exponential decay over several orders of magnitude for the free-decay tests. The damping factors

of each of the various distinct damping mechanisms often (but not always) add when each is small:

gtotal = g + gl + g, + ... , (B.2)

and so g is a more convenient measure than Q:

1
Qtotal = 1 (B.3)

allow large depends entirely upon the precision one requires. For experimental measurements of 4- 10%, the above

simple interrelations are usable for g < 0.3, the differences decreasing as g2.
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Appendix C

Zener thermoelastic damping

In his classic book Elasticity And Anelasticity Of Metals ([25]), Clarence Zener describes a variety

of damping mechanisms that operate within metals. One of them, thermoelastic damping, is of

special importance to the damping of transverse vibrations. The idea is simple: As the beam flexes,

its compressed side heats, and its stretched side cools. 1 Thermal conduction operates to relax the

thermal gradient to bring about thermal equilibrium. Relaxation occurs on a time scale

thickness 2

T _ thermal diffusivity" (C.1)

For very fast vibrations, there is no time for thermal flows to redistribute any of the elastically

stored energy, and all the elastic energy stored in the bent beam is mechanically available. The

adiabatic modulus applies, and there is no absorption. For very slow vibrations, there is enough

time for thermal flows to achieve thermal equilibrium (i. e., to completely relax part of the elastically

stored energy), and all processes are isothermal. The isothermal modulus applies, and there is no

absorption. However, when the time scales of vibration and thermal relaxation are about the same,

2¢rf_ _ 1, (C.2)

then some of the mechanical energy that the beam stores as elastic distortion is converted into heat

during the half period that the beam is flexing. Hence, this energy is not available to be converted

into mechanical velocity during the next half period. So there is absorption of mechanical energy.

Zener showed that the damping factor g is

gZener = gMax" _)(_) (c.3)

to a good approximation, where

gMax = (a2ET)/(2c),

= (1/i)di/dT = d ln_/dT = linear thermal expansion,

E = Young's modulus,

1The thermoelastic effect is much greater for gases and so was noticed long ago by Newton who did not understand
what he observed; the effect was correctly understood and described by Laplace. Clearly, Zener stood in a noble line
when he applied this idea to solids.
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T --- absolute temperature,

c = volume specific heat capacity,

T)(fl) = 2fl/(1 + f12) = 2/(12 + 1/fl) is the Debye relaxation function,

l_ = 21rf T ---- f / fZener is a dimensionless frequency,

T = (h/lr)2/atd is the thermal relaxation time for a rectangular beam of uniform thickness h,

fZener = (Ir/2)(atd/h 2) is the frequency of maximum g, and

atd ----thermal diffusivity of the beam.

Zener showed that gZener(f) described the damping in a great variety of materials, including many

metals (including aluminum) and also glass. Later workers have shown that, at least for frequencies

within a decade or so of fZener, this model describes observed damping to within the accuracy with

which the above-listed elastic and thermal properties are known. In some cases, the agreement

is to within 5% with no adjustable parameters. Experiments with reeds vibrating in a vacuum

show excellent agreement for frequencies as much as a decade below fZener, as well as above it.

Hence, experiments that show g rising above gZener as the frequency is dropped below fZener [3] are
probably experiencing extraneous damping.
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